Вдвое круче. Учёные создали полностью искусственную ДНК

А кто сказал, что пола может быть только два?

Даже на Земле полно примеров. Биологических.

Социальных, типо содомитов всех мастей, я не рассматриваю. У них ДНК в норме и пол, ею определенный, тоже, у них с головой не в порядке.

У многих рептилий, которые считаются общим предком птиц и млекопитающих, хромосомы самцов и самок не различаются, а пол детенышей определяется температурой, при которой происходит инкубация яиц.

Тут уместно вспомнить, в чем суть полового размножения. А состоит она в том, что происходит обмен генетической информацией между организмами. Но чтобы было что обменивать, нужно иметь это в излишке. Поэтому для полового размножения нужно, чтобы полный комплект хромосом присутствовал, как минимум, в двух копиях. В принципе, диплоидными организмами ограничиваться не обязательно. И тогда можно представить ситуацию, когда оплодотворение происходит при слиянии не двух, а трех клеток, каждая из которых содержит три хромосомы, определяющие пол. Такой мир трехполых существ описан в одном из романов Азимова. Для них генетическая схема должна быть такой: (XXX-XXY-XYY). Она, в принципе, устойчива, но количество особей XXY в потомстве будет превосходить число XXX и XYY вместе взятых.

Поэтому, стоит вернуться к бинарному спариванию. Что если половых хромосом взять не две, а три? Тогда возможны шесть типов полов: XX,XY,YY,XZ,YZ,ZZ. Для простоты стоит сделать допущение, что один тип особей может спариваться только с одним другим типом. Тогда единственной стабильной нетривиальной схемой размножения будет (XY-ZZ,XZ-YZ). Первый тип спаривания дает потомство XZ и YZ, а второй - XY, YZ, XZ и ZZ. В результате, число особей XZ и YZ в устойчивой популяции будет в два раза больше, чем число особей XY и ZZ, а отклонение от этого соотношения будет скорректировано в последующих поколениях.
Можно садиться писать роман, в котором XY и ZZ являются кастой рабов, производящих детей для доминирующей касты XZ и YZ, а рождение XY или ZZ ребенка в XZ-YZ семье считается большим несчастьем.

у мхов происходит чередование поколений -
Жизненный цикл. Зеленое фотосинтезирующее растение у мхов - это половое поколение, называемое гаметофитом. Гаметы, т. е. половые клетки, образуются на нем в особых половых органах (гаметангиях). Мужской гаметангий называется антеридием, женский - архегонием. Из оплодотворенной яйцеклетки (зиготы) развивается споровое поколение - спорофит. У мхов он практически лишен хлорофилла, остается прикрепленным к гаметофиту и получает от него питание. У спорофита каждая клетка содержит двойной (диплоидный) набор хромосом, а у гаметофита - одинарный (гаплоидный), как в гаметах. При слиянии спермия с яйцеклеткой из двух гаплоидных наборов образуется один диплоидный, необходимый для развития спорофита. У последнего при формировании спор происходит т. н. редукционное деление клеток (мейоз), каждая спора снова становится гаплоидной и может прорасти в такой же гаплоидный гаметофит.
итого - мужская и женская особь и еще бесполый спорофит

Слившись с этой историей, вы можете входить в иные реальности без помощи книг и кассет. Вы можете переживать их. Многие первобытные культуры умеют находить остатки Живой Библиотеки на планете.

Именно этим объясняется почитание Земли, животных и птиц, понимание цельности, взаимосвязи всего сущего. Эти культуры были помещены на планету в качестве учебных классов и очагов активации памяти, когда наступит нужное время.

ТРОЙНАЯ СПИРАЛЬ ДНК ПРИВЕДЕТ ВАС К ОТКРЫТИЮ ЦЕНТРА ЧУВСТВОВАНИЯ

Тройная спираль ДНК приведет вас к открытию центра чувствования. Чувствование подразумевает эмоции, и именно эмоции - широкая дорога к духовному «я». Когда люди отвергают или подавляют проявление своих эмоций, они не могут попасть в высшие духовные сферы.

Познайте все свои «я».

Эта информация была привнесена на планету очень давно, но в результате разобщения информации люди не могли увидеть своего богоподобия и великолепия.

ДНК несет в себе кодировку, так как ее спирали состоят из тончайших светокодированных нитей. Эти эфирные нити содержат информацию по принципу волоконно-оптических систем.

Столб Света, при помощи которого вы активируете клетки своего тела для получения информации Света, также состоит из светокодированных нитей. Эти светоносные элементы хранят в себе огромный объем информации, и ваше тело наполнено ими.

Когда нити собраны в пучки, или, говоря другими словами, имеют определенную структуру, эти элементы начинают действовать, транслируя информацию в структуры мозга. В том числе - историческую информацию.

Все, что необходимо сделать, чтобы ускорить свое духовное развитие, - это перестроить информационный порядок, реорганизовать информационные нити внутри самих себя. Эта вселенная - зона свободы воли, и часть игры заключается в том, что кто-то все время хочет быть главным и контролировать других.

Вы - члены Семьи Света. Перед какой иерархией и перед какими богами вы держите ответ?

Кое-кто желает, чтобы вся планета функционировала только в рамках логики - логики, базирующейся на страхе. Лучший совет, который мы вам можем дать на данный момент, - это использовать, исследовать данную логику.

Скажите себе: «Да, сейчас я отдамся на волю логики и посмотрю, куда приведет меня мой логический ум. Он желает властвовать надо мной. Моей логике были внушены определенные понятия.

Но мне также были открыты знания, которые, как я чувствую всем своим существом, являются истинными. Я просто понаблюдаю, каким образом я колеблюсь между двумя данными видами мышления -логическим и интуитивным, внешним и внутренним знанием.

Вызывает ли во мне данное противоборство гнев? Чувствую ли я себя неуверенно? Что приносит мне ощущение духовного роста, что вдохновляет меня? Что дает мне чувство безопасности? Что я понимаю о самом себе? Что я чувствую?»

К 1950-м годам ученые не сомневались, что черты живых организмов в основном предопределены до рождения и передаются по наследству. У ребенка есть глаза, потому что глаза были у его родителей, не случаен и цвет глаз, как и склонность к близорукости. Чего исследователи не могли понять, так это где хранится вся эта информация. Долгое время считалось, что носитель - белки с их сложной структурой, в которой мерещилось все многообразие жизни. Но к середине 1940-х главной подозреваемой стала ДНК, огромная - у человека она длиной около метра - молекула, обнаруженная почти во всех типах клеток.

ДНК была открыта еще в 1869 году швейцарцем Иоганном Фридрихом Мишером, но тот не придал находке большого значения: его интересовало строение белых кровяных телец.

Кто разгадает первым

Когда в октябре 1951 года Уотсон начал работать с Фрэнсисом Криком в одном кабинете в Кембриджском университете, о ДНК было известно, что она состоит из четырех повторяющихся кирпичиков-оснований с сахаром и остатком фосфорной кислоты, причем аденина в ней столько же, сколько тимина, а гуанина - как цитозина. Но каким образом связаны эти составляющие, ученые понятия не имели.

Только предполагалось, что ДНК напоминала спираль, точнее, винт, но двойной ли, тройной или какой-нибудь другой, как в нем располагались основания, как эта структура могла хранить и воспроизводить наследственную информацию, если вообще могла, - все это оставалось загадкой. Познакомившись, Уотсон и Крик быстро поняли, что хотят вместе ее разгадать.

Кроме Уотсона и Крика структуру ДНК пытались выяснить еще две группы ученых. В Лондоне Морис Уилкинс и Розалинд Франклин, постоянно ругаясь, всматривались в рентгеновские снимки кристаллизованных молекул, а в Калифорнийском технологическом институте над загадкой жизни бился знаменитый химик Лайнус Полинг, который до этого первым определил строение компонентов белков.

За исследования химических связей в 1954 году ему дадут Нобелевскую премию. На его фоне Крик и Уотсон выглядели случайными прохожими: первый был по образованию физиком и только за четыре года до того переключился на биологию, а второму исполнилось всего 23 года. Правда, к тому времени у Уотсона уже была докторская степень.

Первая модель ДНК, разработанная Уотсоном и Криком, состояла из трех цепочек с фосфатными остовами в середине. Когда модель показали Франклин, та подняла коллег на смех: она была уверена, что остатки фосфорной кислоты должны располагаться с внешней стороны молекулы, а не в центре. Начальник Уотсона и Крика - Лоуренс Брэгг - так разозлился из-за этой неудачи, что запретил им дальше заниматься ДНК.

Еще не все пропало

Однако спустя год Брэгг поменял свое решение. В его лаборатории работал сын Лайнуса Полинга, который рассказал, что отец создал свою модель ДНК. В Брэгге взыграло самолюбие.

Они с Полингом были крупнейшими в мире специалистами в своей области, но американец первым определил строение и больших неорганических молекул, и белковой альфа-спирали. Брэгг был - и остается до сих пор - самым молодым лауреатом Нобелевской премии по физике, которую ему и его отцу вручили еще в 1915 году. Но с конца 1920-х он вечно оставался позади Полинга.

Через месяц в Кембридже раздобыли еще не опубликованную статью Полинга с описанием модели. Ко всеобщему удивлению, ДНК в ней представала тройной спиралью с фосфатными остовами в центре, как за год до того предлагали Крик и Уотсон. В автобиографии Уотсон вспоминал: "Пока Френсис поражался новаторскому подходу Полинга к химии, я начал дышать спокойнее. К этому моменту я знал, что мы все еще в игре".

По рассказам Уотсона, он приезжал в Лондон, чтобы обсудить статью Полинга с Франклин, но та не разделила его энтузиазм и сказала, что молекула ДНК не может быть спиральной. Возможно, Уотсон приврал: в лабораторном журнале Франклин сохранились более ранние записи о том, что одна из двух форм ДНК может представлять собой именно спираль. Со слов Уотсона, этот случай стал последней каплей для работавшего с Франклин Мориса Уилкинса. Ее упрямство так надоело, что он в сердцах достал из ящика рентгеновский снимок ДНК и показал его Уотсону. У того отпала челюсть.

Квадратная пластинка размером всего несколько сантиметров вошла в историю как "Фотография 51". Чтобы сделать этот кадр, Франклин положила вытянутый в нить и кристаллизованный образец человеческой ДНК в специальную камеру, где рентгеновские лучи больше 60 часов отскакивали от него на пленку, формируя изображение - полосатый крест. Для Уотсона этот крест стал очевидным доказательством того, что ДНК состоит из двух закрученных цепочек. Франклин же этого не разглядела.

Красота - в простоте

Теперь ученые были уверены в спиралевидной форме молекулы. Но им еще нужно было объяснить, как в ДНК связаны кирпичики-основания с двух разных цепочек, - черные пятна на "Фотографии 51". Для этого Уотсон по-разному переставлял структурные формулы этих кирпичиков, но результата не было. Пока американский химик Джерри Донохью не показал ему свежую статью, где были описаны немного другие формулы кирпичиков ДНК.

Несколько дней Уотсон и Крик обдумывали новую модель, а 21 февраля 1953-го - ровно 65 лет назад - Уотсон догадался, что аденин из одной цепочки соединяется только с тимином из другой, а цитозин - с гуанином. В таком случае молекула ДНК напоминает равномерно закрученную лестницу с краями из сахара, остатка фосфорной кислоты и с параллельными ступенями одинаковой длины. Эти сочетания объяснили, почему в любой молекуле ДНК содержится одинаковое количество аденина с тимином и цитозина с гуанином. Наконец, если у каждого кирпичика есть только одна пара, то молекула может разделиться пополам и образовать две копии с той же генетической информацией. Ученых поразило, какой простой и красивой оказалась разгадка.

"Мы разгадали тайну жизни!", - ставшую знаменитой фразу Фрэнсис Крик произнес в своем любимом баре в Кембридже, где они с Уотсоном праздновали открытие. Впрочем, до всеобщего признания было еще далеко.

Новая загадка жизни

Первым делом выкладки показали Уилкинсу и Франклин. Те два дня сопоставляли их с рентгеновскими снимками и не нашли противоречий. В марте черновик статьи с описанием модели послали Полингу. Он похвалил коллег, но не понял, почему они отбросили гипотезу о тройной спирали. Для Полинга все встало на свои места, только когда он приехал в Кембридж и увидел фотографии Франклин.

В апреле статья Крика и Уотсона вышла в журнале Nature. В 1962 году Уотсону, Крику и Уилкинсу присудили Нобелевскую премию. Франклин умерла в 1958 году и осталась без награды. В последующие десятилетия другие ученые создали трехмерные компьютерные модели, расшифровали ДНК человека и других видов, а в последние годы научились редактировать записанные в ДНК гены. Возникла новая загадка - что станет с жизнью, если теперь ее программирует человек.

Двойная спираль ДНК является одним из символов науки, но немногие знают, что эта нуклеиновая кислота способна образовывать и более сложные структуры. До недавнего времени они интересовали разве что химиков и кристаллографов - считалось, что неканонические формы ДНК не встречаются в живых клетках. Британские биологи нанесли мощный удар по этому стереотипу.

Про Джеймса Уотсона, одного из первооткрывателей двойной спирали ДНК, рассказывают такой анекдот. Как-то на лабораторном семинаре в Колд Спринг Харбор, когда колкий на язык Уотсон больше обычного увлекся критикой своих сотрудников, один из них попытался урезонить своего начальника: «Джим, если у тебя есть Нобелевская премия (a Nobel prize), это еще не значит, что все остальные ничего не понимают в том, чем занимаются». Ответ Уотсона оказался труднопереводимым, но запоминающимся: «I don"t have a Nobel Prize, I have the Nobel prize» («у меня не просто Нобелевская премия, а та самая Нобелевская премия»), - заявил он.

Уотсона можно понять: опубликованная им совместно с Френсисом Криком двуспиральная структура ДНК - это не только важнейшее открытие в биологии XX века, это еще и хрестоматийный образ, один из главных символов науки вообще. Вероятно, именно из-за феноменальной известности этой структуры мало кто знает, что ДНК бывает не только двуспиральной. Да и не всякая двуспиральная ДНК одинакова.

Другая двойная

Открытие Уотсона и Крика (на основе данных, полученных Розалинд Франклин) на долгое время затмило все остальные структуры, которые рассматривались в качестве альтернативных. Это неудивительно: ключевое свойство модели заключается в том, что она самой своей структурой показывает, как может храниться и копироваться генетическая информация.

После публикации Уотсона и Крика сразу стало понятно, что для воспроизводства нуклеиновой кислоты достаточно расплести две ее нити и для каждой из них, как по слепку, восстановить комплементарную пару. Это сразу объясняло и механизмы наследственности, и причину изменчивости, да и вообще саму теорию эволюции ставило на прочную экспериментальную почву.

Richard Wheeler / Wikipedia

В ходе дальнейших исследований оказалось, что двойная спираль ДНК, в общем-то, не обязана в точности соответствовать модели Уотсона-Крика. Физики, исследовавшие спектры препаратов ДНК, и их коллеги-кристаллографы обнаружили, что две те же самые нити можно заплести и в более толстую, более крутую спираль, которая довольно сильно отличается от модели Уотсона-Крика. Полный оборот такой спирали содержит 11, а не 10 нуклеотидов. Кроме того, их плоскости сильнее повернуты относительно оси молекулы, из-за чего в ее центре (если смотреть с «торца») образуется пустота. Да и бороздки, куда белки протягивают свои «щупальца» на поверхности такой ДНК имеют меньшую глубину.

Эта структура, в которую сворачивается ДНК при недостатке влаги, называется A-формой в противоположность классической B-форме. Этот подвид ДНК для биологов так и остался лабораторной экзотикой. Зато оказалось, что другая нуклеиновая кислота - РНК, которая тоже порой сворачивается в спираль, образует как раз именно такую структуру. То же самое происходит и с гибридами между ДНК и РНК.

В 1970-х годах удалось обнаружить еще более экзотическую структуру нуклеиновой кислоты - Z-форму. Свое название она получила от изогнутого вида линии нуклеотидов в цепях. Этих цепочек в структуре тоже две, как и в A и B-формах, но только скручены они не в правую, а в левую спираль.

В отличие от A-формы, условием образования левоспиральной Z-формы оказались не специфические условия среды, а особая последовательность нуклеотидов на ДНК. Некоторые последовательности оказались очень склонны к образованию таких форм, и соответствующие участки удалось найти в геноме многих организмов.

Z-форма ДНК

Ученым известны и другие формы ДНК: C-форма или, скажем, комплекс-тример, образующийся между тремя разными нитями во время рекомбинации. К слову сказать, именно трехспиральную структуру первоначально рассматривали Уотсон и Крик перед тем, как открыть двойную спираль. Такую же модель изучали и их конкуренты - Полинг и Кори.

Однако, пожалуй, самой необычной среди известных форм ДНК является так называемый G-квадруплекс - структура, образованная из четырех нитей нуклеиновой кислоты. Именно ее удалось в большом количестве найти на человеческих хромосомах британским биологам.

Квадруплекс

Первые намеки на возможность образования таких структур были получены задолго до прорывной работы Уотсона и Крика - еще в 1910 году. Тогда немецкий химик Ивар Банг обнаружил, что один из компонентов ДНК - гуанозиновая кислота - при высоких концентрациях образует гели, в то время как другие составные части ДНК таким свойством не обладают.

В 1962 году с помощью рентгеноструктурного метода удалось установить структуру ячейки этого геля. Она оказалась составлена из четырех остатков гуанина, связывающих друг друга по кругу и образующих характерный квадрат. В центре связь поддерживает ион магния. Такие же структуры могут образовываться и в ДНК, если в ней много гуанина. Эти плоские квадраты складываются в стопки, и получаются довольно устойчивые, плотные структуры.

В четырехспиральные комплексы могут сплетаться четыре отдельные цепочки ДНК, но это скорее является исключением. Чаще единственная нить нуклеиновой кислоты просто завязывается в узел, образуя характерные утолщения (например, на концах хромосом), либо двуцепочечная ДНК на каком-то богатом гуанином участке образует локальный квадруплекс.

Julian Huppert / Wikipedia

Бремя доказательства

Со всеми альтернативными, неканоническими структурами ДНК у биологов возникает одна и та же проблема. Дело в том, что получить такую ДНК в пробирке, установить ее структуру - это одно. Но доказать, что она существует в реальной живой клетке, да еще и выполняет какую-то функцию, важную для этой клетки, - это совсем другое.

С А-формой ДНК, например, до сих пор неясно - имеет ли она хоть какое-то значение для жизни или это просто лабораторный артефакт. Данных по Z-форме чуть больше: белки, стимулирующие ее образование, были найдены в некоторых вирусах.

Что касается G-квадруплекса, то это просто ярчайший пример того, как наши знания ограничиваются существующими методами. С точки зрения химии и кристаллографии о четырехспиральной ДНК известно почти все, с точки зрения биологии - очень мало. Наиболее изучено существование квадруплексов на концах хромосом - на теломерах. Также известен по крайней мере один регуляторный участок (в онкогене c-myc ), в котором такая ДНК действительно существует. Но насколько такая ДНК является экзотикой, и какова ее представленность в человеческих хромосомах, до сих пор было не известно.

Теломеры - это ДНК-белковые комплексы, которые возникли у клеток с переходом от кольцевых на линейные хромосомы. При этом возникла проблема недорепликации концов: если получить полноценную копию кольцевой ДНК довольно просто, то линейная хромосома при копировании будет всегда немного укорачиваться. Компенсирует это укорачивание фермент теломераза, который достраивает концы хромосом «бессмысленными» повторяющимися последовательностями. При этом одна из цепей ДНК на конце становится длиннее другой. Именно этот одноцепочечный «хвост» и сворачивается на концах хромосом в G-квадруплексы.

Понятно, что рассмотреть структуру ДНК в микроскоп невозможно. Невозможно также применить для этого рентгеноструктурный анализ - он требует получения кристаллов и большого количества вещества. Для поиска квадруплексов какое-то время назад применялись низкомолекулярные вещества-красители, которые преимущественно связываются именно с такой структурой. К сожалению, впоследствии оказалось, что они не только связываются с четырехспиральной ДНК, но и сами стимулируют ее образование, а значит, не подходят для исследования.

Прорыв в этом направлении произошел после того, как удалось получить специфические антитела, которые связываются именно с G-квадруплексом, но при этом никак не влияют на его образование. Чтобы увидеть очень слабый сигнал от таких антител, ученые применили их на необычном объекте - инфузориях.

У этих одноклеточных имеется целых два ядра, одно из которых не используется (хранится для размножения), а во втором те же самые хромосомы тиражируются в сотнях одинаковых копий. В результате соответственно увеличивается и количество хромосомных концов, где находятся квадруплексы в составе теломер. Использование такого необычного объекта позволило рассмотреть четырехспиральную ДНК на концах хромосом, но увидеть их у человека и млекопитающих до сих пор никому не удавалось.

Инженеры антител

Именно этого добились британские исследователи из Кембриджа во главе с Шанкаром Баласумбраняном. Они создали специальные антитела, которые связываются исключительно с квадруплексом и не реагируют на двуцепочечную, одноцепочечную ДНК или на РНК. Антитела были разработаны исключительно инженерным способом - с помощью так называемого фагового дисплея, когда миллиарды и миллиарды вариантов отбираются in vitro по принципу максимальной специфичности.

Используя такие антитела на препаратах клеток, авторы увидели светящиеся точки на концах хромосом - те места, где присутствует G-квадруплекс. Еще интереснее то, что такие точки также были обнаружены и в теле хромосом - там, где их существование еще ни разу не было экспериментально продемонстрировано.

Конечно, имелись данные о наличии такой структуры в регуляторной области некоторых генов, связанных с раком. Кроме того, большое количество таких точек (более 375 тысяч) было предсказано просто по анализу последовательности генома человека. Однако такого одновременно полномасштабного и экспериментального исследования еще никому не удавалось провести.

Авторы показали, что распределение квадруплексов ДНК по геному сильно меняется в зависимости от стадии клеточного цикла. Это неудивительно и с физической точки зрения - копирование нуклеиновой кислоты без расплетения такого узла невозможно. Но сам факт, безусловно, свидетельствует о некой функциональной роли таких участков.

Biffi, G., et al., Nature Chemistry, 2013

Впрочем, говорить о том, что мы знаем, для чего ДНК-квадруплексы важны, пока рано. Существует несколько моделей, в которых такая ДНК является регуляторным элементом, но опять-таки все упирается в вопрос, насколько справедливо переносить знания, полученные «в пробирке», на то, что реально происходит в клетке.

Сейчас основная задача молекулярных биологов - подтвердить независимым способом выводы британских ученых. Ведь методы, связанные с антителами, среди биологов известны тем, что они иногда просто отказываются работать в «чужих» руках.

Несмотря на множество грамотных контрольных экспериментов, поставленных британцами, основывать на одном исследовании слишком далеко идущие выводы о роли четырехспиральной ДНК будет довольно опрометчиво. Лучше всего было бы придумать какой-то новый, независимый от антител, оригинальный способ «поймать» G-квадруплексы на хромосомах человека. Тот, кому это удастся, возможно, и не сможет претендовать на тот самый «the Nobel prize», но место в истории науки ему обеспечено.

Рис 2. Сравнение Хугстиновских пар A T и C G с Уотсон-Криковскими. Хугстиновская геометрия может быть достигнута либо вращением пуринов вокруг гликозидной связи (χ), либо переворачиванием основания (θ), влияющих одновременно на позиции C8 и C1 (обозначено желтым).

Хугстиновские пары - альтернативный вариант связывания нуклеотидов на комплементарных цепях нуклеиновых кислот ДНК или РНК , соединённых с помощью водородных связей не по каноническому Уотсон-Криковскому связыванию оснований ( , и ДНК) (Рис. 1)(отсутствует). Для Хугстиновских пар две антипараллельные нуклеиновые цепи образуют водородные связи по большой бороздке. Пурины поворачиваются на 180° (Рис. 2). Хотя Хугстиновские пары наблюдаются редко, в некоторых последовательностях ДНК, особенно в динуклеотидах 5"-CA-3" и 5"-TA-3" , они существуют в равновесии со стандартными Уотсон-Криковскими парами оснований.

История [ | ]

Химические свойства [ | ]

Поскольку Хугстиновские пары образованы альтернативными водородными связями , они отличаются свойствами от Уотсон-Криковских пар. Например, угол между двумя гликозильными связями больше (80° для пары A T), а расстояние C1′–C1′ - меньше, всего 8,2 , чем в обычной геометрии (10,1 ).

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «school-mon.ru» — Школьный понедельник - Образовательный портал