Разложение периодических функций в. Применение MATHCAD в инженерных расчетах: Учебное пособие Mathcad разложение в ряд фурье

11. ЭЛЕКТРИЧЕСКОЕ И МАГНИТНОЕ ПОЛЕ

Задача 34. Два точечных электрических заряда q 1 , q 2 имеют координаты (X 1 ,Y 1) и (X 2 ,Y 2). Рассчитайте распределение потенциала электрического поля, постройте эквипотенциальные линии и поверхность φ=φ(x,y).

Потенциал электрического поля, создаваемого зарядами q i с координатами (X i ,Y i), i=1, 2, ... в точке (x,y) равен:

Результаты расчета эквипотенциальных линий и поверхности φ=φ(x,y) --- в документе 24.mcd. Заряды положительные, поэтому по мере приближения к каждому из них потенциал возрастает.

Задача 35. Рядом с заряженной пластиной расположены два точечных заряда. Изучите распределение потенциала и постройте силовые линии напряженности электрического поля.

Зависимость φ=φ(x,y) определяется как в предыдущей задаче, напряженность электрического поля в двумерном случае равна:

Для построения силовых линий вычисляются проекции вектора напряженности на оси координат и создается матрица E i,j:=Ex(x i ,y j)+ 1i· Ey(x i ,y j) и нормированная матрица A i,j , используемая для построения векторного поля (25.mcd).

Задача 36. Рассчитайте индукцию магнитного поля, создаваемого двумя витками с током, и постройте силовые линии в случаях, когда токи сонаправлены и противоположно направлены.

Рассмотрим виток с током, лежащий в плоскости XOY, с центром в точке O. Разобъем его на элементы dl s , определим элементарный магнитный момент, создаваемый каждым элементом в точке наблюдения, и просуммируем их.

Элемент витка и точка наблюдения имеют координаты (r·cosφ s , r·sinφ s , 0), и (x, y, z) соответственно. Для расчета индукции магнитного поля используется закон Био--Савара--Лапласа:

где μ 0 --- магнитная постоянная, I --- сила тока. Решение приведено в документе 26.mcd. Витки расположены параллельно плоскости XOY, на экране получаются силовые линии магнитного поля в плоскости YOZ.

Задача 37. В рассмотренном случае постройте график зависимости модуля индукции магнитного поля от координаты вдоль оси витков с током и перпендикулярно ей.

Задача 38. Получите проекции вектора индукции магнитного поля на плоскость перпендикулярную оси соленоида (витка) с током.

Задача 39. Рассчитайте магнитное поле, создаваемое двумя (тремя) параллельными проводниками, по которым текут токи в различных направлениях.

Задача 40. Изучите магнитное поле, создаваемое соленоидом и прямолинейным проводником с током. Получите проекции индукции магнитного поля на плоскость, содержащую проводник с током.

Задача 41. Имеется два соленоида, расположенных соосно по отношению друг к другу. Постройте силовые линии магнитного поля в случаях, когда токи текут в одном направлении и в противоположных направлениях (27.mcd).

Тригонометрические ряды Фурье с помощью Mathcad.

Цель работы

Научиться раскладывать периодические функции в тригонометрические ряды Фурье с помощью Mathcad и строить графики частичных сумм ряды Фурье.

Оборудование

Пакет программ MathCAD.

Ход работы

Вариант

1) Разложить функцию в тригонометрический ряд Фурье

2) Разложить функцию в тригонометрический ряд Фурье по косинусам

3) Разложить функцию в тригонометрический ряд Фурье по синусам

Допуск к работе

3.2.1 Тригонометрическим рядом Фурье функции называют функциональный ряд вида

3.2.4 Для функции f(x) вычислены коэффициенты Фурье (при разложении её по косинусам)

a 1 = 5, a 2 = 6, a 3 = 7

Запишите тригонометрический ряд Фурье

3.2.5 Функцию f(x) раскладывают в ряд Фурье по синусам (нечётным образом), тогда

Лист
№ докум.№
Подпись
Лист
№ докум.
Подпись
Дата
Лист

3.1.2. Найти числовые характеристики случайной величины x (x – выигрыш владельца одного лотерейного билета).

В лотерее разыгрываются ____ билетов.

Из них выигрывают по ____ рублей

Из них выигрывают по ____ рублей.

3.1.3. Найти числовые характеристики случайной величины «х»

а). 0,15 б) -0,35 в) 0,35 г) 0,25 д) не определить.

3.2.3 В лотерее 200 билетов. Выигрышных билетов 30. Какова вероятность того, что билет не выигрышный?

а). 1,7 б) 0,7 в) 0,17 г) 0,85 д) 0,15

3.2.4 Запишите формулу для вычисления дисперсии дискретной случайной величины.

3.2.5 Запишите формулу для вычисления среднего квадратического отклонения дискретной случайной величины.

________________________________________________________________________________

3.2.6. Д (у) = 25. Чему равно среднее квадратическое отклонение?

а). ± 5 б) 5 в) -5 г) не определить.

3.2.7 Как в MathCAD можно решить уравнение

______________________________________________________________________________

К работе допускается ______________

Результаты работы

4.1. М(х) = ____________ Д(х) = ____________ σ (х) = ___________

Лист
№ докум.
Подпись
Дата
Лист
ПР.140448.00.00
ПРАКТИЧЕСКАЯ РАБОТА 12

Нахождение точечных и интервальных оценок

неизвестных параметров распределения в Excel

1. Цель работы

По данной выборке научиться определять числовые характеристики выборки и оценивать неизвестные параметры генеральной совокупности, оценивать с данной доверительной вероятностью математическое ожидание генеральной совокупности.

2.Оборудование:

IBM PC, программная оболочка Microsoft Excel.

Ход работы

3. 1 Вариант

Оценить с заданной доверительной вероятностью γ= математическое ожидание генеральной совокупности по данной выборке

_____________________________________________________________________________________

3. 2 Допуск к работе

1. Как вычисляется среднее выборочное?

2. Как вычисляется выборочная дисперсия?

____________________________________________________________________________________________________________________________________________________________

3. Как вычисляется среднее квадратичное отклонение?

____________________________________________________________________________________________________________________________________________________________

4. Как вычисляется исправленная выборочная дисперсия?

____________________________________________________________________________________________________________________________________________________________

5. Чем точечная оценка неизвестного параметра распределения отличается от интервальной?

____________________________________________________________________________________________________________________________________________________________

6. Как вычисляется интервал для оценки математического ожидания генеральной совокупности?

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________


7. Как обозначается коэффициент Стьюдента?

Изм.
Лист
№ докум.
Подпись
Дата
Лист
ПР.140448.00.00
____________________________________________________________________________________________________________________________________________________________

8. От чего зависит величина коэффициента Стьюдента?

____________________________________________________________________________________________________________________________________________________________

К работе допускается:______________________________________________

Результаты работы

σ в = S в = t γ =

Вывод

В ходе выполнения данной работы применил формулы точечных и интервальных оценок____________________________________________________________

_________________________________________________________________



Изм.
Лист
№ докум.
Подпись
Дата
Лист
ПР.140448.00.00

П

Глушач В.С. УИТ-44

рактические работы 1,2. Прямое и обратное преобразование Фурье в MathCad.

Освоение работы в MathCad. Получение навыков использования преобразования Лапласа для анализа спектральных составляющих сигналов. Изучение временных и частотных шкал временного ряда и преобразования Фурье.

1. Генерируем временной ряд из трех синусоид. Количество точек должно быть равно 2 ^ n

2. Определяем среднее, дисперсию.

3. Делаем прямое и обратное преобразование Ф. Дважды преобразованный сигнал накладываем на график исходного временного ряда.

4. Находим соотношение между шкалой временного ряда по оси времени и преобразования Фурье по оси частот.

1. Выбираем дискретность по времени dt и количество точек временного ряда в виде nl:= 2 k

Пусть к:= 9 nl:= 2 k nl=512 Длина выборки во времени T:=512

Шаг по Или, учитывая, что nl-1

времени примерно равно nl Тогда i:=0..nl-l t. := i*dt

2. Генерируем входной сигнал х как сумму трех гармонических сигналов и определяем его основные статистики.

А1:= 1 f1:= 0.05 xl i:= Al-sin/2*3.14*fl*t i) srl:= mean(xl) srl = 0.012 s1:=stdev(x1) s1=0.706

A2:= 0.5 f2:= 0.1 x2 i:= A2-sin/2*3.14*f2*t i) sr2:= mean(x2) sr2 = 3.792x10 -4 s2:=stdev(x2) s2=0.353

A3:= 0.25 f3:= 0.4 x3 i:= A3-sin/2*3.14*f3*t i) sr3:= mean(x3) sr3 = 3.362x10 -4 s3:=stdev(x3) s3=0.177

x i:= xl i + x2 i + x3 i sry:= mean(x) sry = 0.013 sy:= stdev(x) sy = 0.809

1. Прямое преобразование Фурье в MathCad F:= fft(x)

Максимаьный период гармонической составляющей, которая может быть во временном ряде равен длине выборки. Эта гармоническая составляющая соответствует минимально возможной частоте по шкале частот преобразования Фурье frnin и соответственно шагу по оси частот преобразования Фурье df.

Tmax:= T frnin:=
df:= frnin df = 1.953 x 10 -3

Таким образом, минимальная частота и шаг по частоте преобразования Фурье равны frnin =df = 1/Т.

Преобразование Фурье имеет количество ординат по частоте в два раза меньше количества ординат временного ряда во времени n2=nl/2 или, включая нулевую точку (в которой преобразование Фурье не определено)

n2:= 1 + 2 k -1 n2 = 257 j:= l..n2

Индекс текущей частоты изменяется от j=l до j=n2

При этом частота изменяется от fmin =df= 1/T Максимальная частота finax:= n2*df fmax = 0.502

до frnax=n2*df Текущая частота f i:= i*df

f 1 = 1.953 x 10 -3 f 257 = 0.502

Обратим внимание, что преобразование Фурье определено только для частот в диапазоне от f=finin до f=fmax.

При этом пики на графике спектра Фурье соответствуют частотам исходных синусоид, т.е преобразование Фурье позволяет выделить частотные составляющие сигнала. Но амплитуды гармонических составляющих сейчас не отображают амплитуды составляющих исходного временного ряда (где А1=1, А2=0.5, А3=0.25)

Обратим также внимание, что при dt =1 максимальная частота в спектре преобразования Фурье равна frnax=0.5 колебаний в единицу шкалы времени. При dt = 1сек это соответствует fmax = 0.5 гц. При этом период максимальной частоты равен Тfmax=1/0.5=2. Это означает, что на один период максимальной частоты приходится два отбора временного ряда. Это соответствует теореме Котельникова, согласно которой для восстановления гармонического непрерывного сигнала из дискретного без потери информации на один период должно быть не менее двух отсчетов во времени.

3. Проведем проверку совпадения временных рядов до и после двойного преобразования Фурье. Для этого получим обратное преобразование Фурье от полученного прямого преобразования. Оно должно совпадать с исходным временным рядом, что подтверждается следующим графиком FF:= ifft(F)

В предыдущем разделе рассказывалось о возможностях символьного процессора Mathcad, позволяющего осуществить аналитическое преобразование Фурье функции, заданной формулой. Между тем огромный пласт задач вычислительной математики связан с расчетом интегралов Фурье для функций, либо заданных таблично (например, представляющих собой результаты какого-либо эксперимента), либо функций, проинтегрировать которые аналитически не удается. В данном случае вместо символьных преобразований приходится применять численные методы интегрирования, связанные с дискретизацией подынтегральной функции и называемые потому дискретным Фурье-преобразованием.

В численном процессоре Mathcad дискретное преобразование Фурье реализовано при помощи популярнейшего алгоритма быстрого преобразования Фурье (сокращенно БПФ). Этот алгоритм реализован в нескольких встроенных функциях Mathcad, различающихся только нормировками:

  • fft(y) - вектор прямого преобразования Фурье;
  • FFT (у) - вектор прямого преобразования Фурье в другой нормировке;
  • ifft (w) - вектор обратного преобразования Фурье;
  • IFFT (w) - вектор обратного преобразования Фурье в другой нормировке:
    • у - вектор действительных данных, взятых через равные промежутки значений аргумента;
    • w - вектор действительных данных Фурье-спектра, взятых через равные промежутки значений частоты.

Внимание!
Аргумент прямого Фурье-преобразования, т. е. вектор у, должен иметь ровно 2 n элементов (n - целое число). Результатом является вектор с 1+2 n-1 элементами. И наоборот, аргумент обратного Фурье-преобразования должен иметь 1+2 n-1 элементов, а его результатом будет вектор из 2 n элементов. Если число данных не совпадает со степенью 2, то необходимо дополнить недостающие элементы нулями
.

В листинге 4.14 показан пример расчета Фурье-спектра для модельной функции f (x), представляющей собой сумму двух синусоид разной амплитуды (верхний график на рис. 4.10). Расчет проводится по N=128 точкам, причем предполагается, что интервал дискретизации данных у i равен h. В предпоследней строке листинга корректно определяются соответствующие значения частот W, а в последней применяется встроенная функция FFT. Полученный график Фурье-спектра показан на рис. 4.10 (снизу). Обратите внимание, что результаты расчета представляются в виде его модуля, поскольку сам спектр, как уже отмечалось, является комплексным. Очень полезно сравнить полученные амплитуды и местоположение пиков спектра с определением синусоид в начале листинга.

Примечание
Более подробную информацию о свойствах и практике применения Фурье-преобразования вы найдете в главе 14
.

Листинг 4.14 . Дискретное преобразование Фурье (алгоритм БПФ) модельного сигнала:


Рис. 4.10 . Модельная функция и ее преобразование Фурье (продолжение листинга 4.14)

Mod(x, y) – остаток от деления x на y. Результат имеет тот же самый знак, что и x; angle(x, y) – угол (в радианах) между положительной полуосью x и вектором (x, y) в плоскости XY. Аргументы должны быть вещественны. Возвращает значение между 0 и 2π. ceil(3.25) = 4 floor(3.25) = 3 mantissa (x) := x − floor(x) mantissa (3.45) = 0.45 Традиционное округление: roundoff (x) := if(mantissa (x) < 0.5, floor(x) , ceil(x)) roundoff (3.46) = 3 roundoff (3.56) = 4 Рис. 14. Создание функций округления На рис. 14 показано, как из этих функций могут быть сформированы функции округления. 4.4. Дискретное преобразование Фурье В Mathcad входят два типа функций для дискретного прямого и об- ратного преобразования Фурье: fft/ifft и cfft/icfft. Эти функции дискрет- ны: они берут в качестве аргументов и возвращают векторы и матрицы. Они не могут быть использованы с другими функциями. Используйте функции fft и ifft, если выполнены два следующих ус- ловия: аргументы вещественны, и вектор данных имеет 2m элементов. Первое условие необходимо, потому что функции fft/ifft используют тот факт, что для вещественных данных вторая половина преобразова- ния Фурье является комплексно сопряженной с первой. Mathcad отбра- сывает вторую половину вектора-результата. Это сохраняет время и память при вычислениях. Пара функций cfft/icfft не использует симметрию в преобразова- нии. По этой причине необходимо использовать их для комплексных данных. 41 Второе условие требуется, потому что пара функций fft/ifft исполь- зует высоко эффективный алгоритм быстрого преобразования Фурье. Для этого вектор аргумента, используемого с fft, должен иметь 2m эле- ментов. В функциях cfft/icfft использован алгоритм, который допускает в качестве аргументов как матрицы, так и векторы произвольного раз- мера. Когда эта пара функций используется с матрицей в качестве аргу- мента, вычисляется двумерное преобразование Фурье. Следует иметь в виду, что если для прямого преобразования исполь- зована функция fft, то для обратного преобразования необходимо ис- пользовать функцию ifft. Аналогично используются функции cfft/icfft. 4.5. Преобразование Фурье в вещественной области Для вещественных векторов с 2m элементами предпочтительно ис- пользовать функции fft/ifft. Функция fft(v) возвращает дискретное пре- образование Фурье, векторный аргумент которой можно интерпретиро- вать как результат измерений через равные промежутки времени некоторого сигнала. Вектор v должен содержать 2m элементов. Резуль- тат – комплекснозначный вектор размерности 1 + 2m–1. Если v имеет размерность, отличную от 2m, Mathcad выдает сообщение об ошибке "неверный размер вектора". Элементы вектора, возвращаемого fft, вычисляются по формуле n −1 ∑ vk e 2 πi (j n) k . 1 Cj = n k =0 В этой формуле n – число элементов в v, i – мнимая единица. Эле- менты в векторе, возвращенном функцией fft, соответствуют различ- ным частотам. Чтобы восстановить фактическую частоту, необходимо знать частоту измерения исходного сигнала. Если v есть n-мерный век- тор, переданный функции fft, и частота измерения исходного сигнала – fs, то частота, соответствующая Ck k fk = fs. n Обратите внимание, что это делает невозможным обнаружить часто- ты выше частоты измерения исходного сигнала. Это ограничение, нала- гаемое не Mathcad, а самой сутью проблемы. Чтобы правильно восста- новить сигнал по его преобразованию Фурье, необходимо произвести 42 i:= 0 .. 63 xi:= sin  π⋅  + rnd (1) − 0.5 i Формирование сигнала:    10  Применяется комплексное преобразование Фурье: c:= fft(x) N:= last (c) N = 32 Обращение преобразования Фурье: z:= ifft(c) N2:= last (z) N2 = 63 j:= 0 .. N k:= 0 .. N2 Графическое представление сигнала zk = xj = 2 –0.499 –0.499 2.34·10 –3 2.34·10–3 0.673 0.673 xi 0 0.659 0.659 1.274 1.274 0.674 0.674 –2 0 20 40 60 80 1.162 1.162 i 0.613 0.613 Фурье-образ 0.179 0.179 4 –0.044 –0.044 0.489 0.489 –0.69 –0.69 cj 2 –1.079 –1.079 –0.777 –0.777 –0.849 –0.849 –1.334 –1.334 0 0 10 20 30 40 j Рис. 15. Быстрые пр6еобразования Фурье в Mathcad 43 измерения исходного сигнала с частотой, по крайней мере, вдвое боль- шей, чем ширина полосы частот. Подробное обсуждение этой пробле- мы содержится в специальных курсах. Функция ifft(v) возвращает обратное дискретное преобразование Фурье. Вектор v должен иметь 1 + 2m элементов, где m – целое. Резуль- тат есть вектор размерности 2m+1. Аргумент v – вектор, подобный созданному функцией fft. Чтобы вы- числить результат, Mathcad сначала создает новый вектор w, комплекс- но сопряженный v, и присоединяет его к вектору v. Затем Mathcad вы- числяет вектор d, элементы которого вычисляются по формуле n −1 ∑ wk e−2πi(j n)k . 1 dj = n k =0 Это та же самая формула, что и для fft, кроме знака минус в функции экспоненты. Функции fft и ifft – точные обращения. Для всех веще- ственных v справедливо ifft(fft(v)) = v. Пример использования прямого и обратного преобразований Фурье приведен на рис. 15. 4.6. Альтернативные формы преобразования Фурье Определения преобразования Фурье, рассмотренные выше, не явля- ются единственно возможными. Например, часто используются следу- ющие определения прямого и обратного преобразований Фурье: n n ∑ f (τ)e−2πi(ν n)τ ; f (τ) = ∑ F (ν) e () . 1 2 πi τ / n ν F (ν) = n τ=1 v =1 Эти определения реализованы во встроенных функциях FFT/IFFT и ICFFT. Они отличаются от быстрого преобразования Фурье следующим: вместо коэффициента 1 n перед обеими формулами стоит коэф- фициент 1/n и коэффициент 1 в обратном преобразовании; знак минус появляется в показателе экспоненты прямого преобразо- вания и исчезает в формуле обратного. 4.7. Кусочно-непрерывные функции Кусочно-непрерывные функции полезны для управления ветвлени- ями и остановками вычислительных процессов. Имеются пять функций 44 Использование условных операторов 2 x:= −2 , − 1.8 .. 2 f (x) := x − 1 g (x) := if(f (x) > 0 , f (x) , 0) g(x) равна f(x), когда f(x) > 0, иначе 0 4 4 2 f (x) g(x) 2 0 2 0 2 0 2 2 0 2 x x h (x) := if(x ≥ 1 , f (x) , − f (x)) иначе –f(x) 5 h(x) 0 Продолжать вычисления до выполнения условия 5 2 0 2 2 quess − a < err x −2 N:= 100 i:= 0 .. N a:= 1000 quess 0:= 10 err:= 10  quess i + a   quess i  quess i+ 1:= until (quess i) − a − err ,  2  2  N2:= last (quess) − 1 j:= 0 .. N2 j= quess j = (quess j)2 = 0 10 100 Число итераций N2 = 5 1 55 3.025·10 3 answer:= quess N2 2 36.591 1.339·10 3 3 31.96 1.021·10 3 answer = 31.623 4 31.625 1·10 3 5 31.623 1·10 3 Рис. 16. Условные выражения в Mathcad 45 Mathcad, относящихся к этому классу. Функция if полезна для выбора одного из двух значений, определяемого условием. Ступенчатая функ- ция Хевисайда Ф(х) и символ Кронекера δ(m, n) во многом аналогичны функции if. Функция until используется, чтобы управлять процессом итераций. Функция if(cond, tval, fval) возвращает значение tval, если cond отли- чен от 0 (истина) и возвращает fval, если cond равен 0 (ложь). Обычно в качестве аргумента cond выбирается булево выражение вида w = z, x > y, x < y, x ≥ y, x ≤ y, w ≠ z. Можно объединять булевы операторы, чтобы записать более сложные условия. Например, условие (x < 1) ⋅ (x > 0) действует подобно логическому "и", возвращающему 1, только если x заключено между 0 и 1. Аналогично выражение (x > 1) + (x < 0) действует подобно логическому "или", возвращающему 1, если x > 1, или x < 0, и 0, если x заключено между 0 и 1. Функция until (x, z) возвращает z, пока выражение x не становится отрицательным; должно содержать дискретный аргумент. Функция until позволяет останавливать вычисления для последовательных значений дискретного аргумента. Функция until полезна в итеративных процес- сах с определенным условием сходимости. На рис. 16 приведены примеры использования функций if и until. Функция Хевисайда эквивалентна следующей функции: Ф (x) := if (x < 0,0,1) Символ Кронекера δ(m, n) возвращает 1, если m = n; иначе 0. Оба аргумента должны быть целочисленными. Символ Кронекера эквива- лентен функции δ (m, n) := if (m = n,1,0) Ступенчатая функция Хевисайда может быть использована для со- здания импульса шириной w: pulse (x, w) := Ф (x) − Ф (x − w) Можно определить также две полезные функции lowpass и highpass. Они обе являются фильтрами – умножение на них какого-либо сигнала 46 вырезает из этого сигнала кусок вокруг точки x, имеющий ширину 2w. Разница состоит в том, что lowpass оставляет только вырезанный ку- сок, highpass – все, кроме вырезанного куска. lowpass (x, w) := pulse (x+w, 2 ⋅ w) highpass (x, w) := 1 − pulse (x+w, 2 ⋅ w) 4.8. Статистические функции Для вычисления статистических оценок случайных совокупностей чисел в Mathcad могут использоваться следующие функции: mean(A) – возвращает среднее значение элементов массива А раз- мерности m × n по формуле m −1 n −1 ∑ ∑ Aij ; 1 mean(A) = mn i =0 j =0 var(A) – возвращает дисперсию элементов массива А размерности m × n согласно формуле m −1 n −1 ∑ ∑ Aij − mean(A) 1 2 var(A) = ; mn i =0 j =0 stdev(A) - возвращает среднеквадратичное отклонение (квадратный корень из дисперсии) элементов m × n массива А stdev(A) = var(A). 4.9. Плотности распределения вероятности Эти функции показывают отношение вероятности того, что случай- ная величина попадает в малый диапазон значений с центром в задан- ной точке, к величине этого диапазона. В Mathcad имеются функции семнадцати плотностей вероятностей. Отметим только некоторые из них: dnorm(x, µ, σ) – возвращает плотность вероятности нормального рас- пределения 1  (x − µ) 2  dnorm(x, µ, σ) = exp  − , 2πσ  2σ 2  47 в котором µ и σ есть среднее значение и среднеквадратичное отклоне- ние, σ > 0; dunif(x, a, b) – вычисляет плотность вероятности равномерного рас- пределения  1 , x ∈ ,  dunif(x, a, b) =  b − a  0,  x ∉ в котором a и b являются граничными точками интервала, a < b. 4.10. Функции распределения Эти функции возвращают вероятность того, что случайная величи- на меньше или равна определенному значению. Функция распределе- ния вероятности – это функция плотности вероятности, проинтегриро- ванная от минус бесконечности до определенного значения. Приведем две из них: pnorm(x, µ, σ) – возвращает функцию нормального распределения со средним µ и среднеквадратическим отклонением σ (σ > 0); punif(x, a, b) – возвращает функцию равномерного распределения. a и b есть граничные значения интервала (a < b). Mathcad имеет ряд функций для генерирования случайных чисел, имеющих разнообразные распределения вероятностей. Приведем две из них: rnorm(m, µ, σ) – возвращает вектор m случайных чисел, имеющих нормальное распределение (σ > 0); runif(m, a, b) – возвращает вектор m случайных чисел, имеющих рав- номерное распределение, в котором a и b являются граничными точка- ми интервала (a < b). Остальные встроенные статистические функции и их описания мож- но посмотреть, выбрав команду Функция из меню Вставка. 4.11. Интерполяция и функции предсказания Интерполяция заключается в использовании значений некоторой функции, заданных в ряде точек, чтобы предсказать значения между ними. В Mathcad можно или соединять точки данных прямыми линия- ми (линейная интерполяция) или соединять их отрезками кубического полинома (кубическая сплайн-интерполяция). 48 В отличие от функций регрессии, обсуждаемых в следующем разде- ле, функции интерполяции определяют кривую, точно проходящую че- рез заданные точки. Из-за этого результат очень чувствителен к ошиб- кам данных. Если данные зашумлены, следует рассмотреть возможность использования регрессии вместо интерполяции. Для линейной интерполяции используется функция linterp(vx, vy, x), которая по векторным данным vx и vy возвращает линейно интерполи- руемое значение y, соответствующее третьему аргументу x. Аргументы vx и vy должны быть векторами одинаковой длины. Вектор vx должен содержать вещественные значения, расположенные в порядке возраста- ния. Эта функция соединяет точки данных отрезками прямых, созда- вая, таким образом, ломаную линию. Интерполируемое значение для конкретного x есть ордината y соответствующей точки ломаной. Пример линейной интерполяции показан на рис. 17. Кубическая сплайн-интерполяция позволяет провести кривую через набор точек таким образом, что первые и вторые производные кривой непрерывны в каждой точке. Эта кривая образуется путем создания ряда кубических полиномов, проходящих через наборы из трех смежных то- чек. Кубические полиномы состыковываются друг с другом, чтобы об- разовать одну кривую. Чтобы провести кубический сплайн через набор точек: создайте векторы vx и vy, содержащие координаты x и y, через кото- рые нужно провести кубичный сплайн. Элементы vx должны быть рас- положены в порядке возрастания; вычислите вектор vs:=cspline(vx, vy). Вектор vs содержит вторые про- изводные интерполяционной кривой в рассматриваемых точках. Чтобы найти интерполируемое значение в произвольной точке, ска- жем х0, вычислите interp(vs, vx, vy, x0), где vs, vx и vy – векторы, опи- санные ранее. Обратите внимание, что можно сделать то же самое, вычисляя interp(cspline(vx, vy),vx,vy, x0). Пример использования кубической сплайн-интерполяции приведен на рис. 17 внизу. 49 Линейная интерполяция i:= 0 .. 5 VXi:=i VYi:=vd(1) VXi = VYi = –3 linterp(VX, VY, 1.5) = 0.389 0 1.268·10 1 0.193 linterp(VX, VY, 3.75) = 0.705 2 0.585 linterp(VX, VY, 4.1) = 0.758 3 0.35 4 0.823 x:= 0 , 0.1.. 5 5 0.174 1 linterp(VX , VY , x) 0.5 VYi 0 0 2 4 6 x , VX i Кубическая сплайн-интерполяция i:= 0 .. 5 VXi:= i VYi:= rnd (1) VS:= lspline (VX, VY) interp (VS, VX, VY, 1.5) = 0.188 interp (VS, VX, VY, 3.75) = 0.868 interp (VS, VX, VY, 4.1) = 0.989 1 VYi = 0.71 interp(VS , VX , VY , x) 0.304 0.5 VYi 0.091 0.147 0.989 0 0 2 4 6 0.119 x , VX i Рис. 17. Примеры интерполяции 50

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «school-mon.ru» — Школьный понедельник - Образовательный портал